Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

\{ Δ-1,4,7,10-Tetrakis[(S)-2-hydroxy-propyl-кO]-1,4,7,10-tetraazacyclodo-decane- $\kappa^{4} N$ \}cadmium(II) 4-nitrophenolate perchlorate hydrate

Philip. J. Davies, ${ }^{\text {a }}$ Stephen F. Lincoln, ${ }^{\text {b }}$ Christopher B. Smith, ${ }^{\text {a }}$ Max R. Taylor, ${ }^{\text {a }}{ }^{*}$ Kevin P. Wainwright ${ }^{\text {a }}$ and Kia S. Wallwork ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, The Flinders University of South Australia, GPO Box 2100, Adelaide SA 5001, Australia, and ${ }^{\text {b }}$ Department of Chemistry, The University of Adelaide, Adelaide SA 5005, Australia
Correspondence e-mail: max.taylor@flinders.edu.au

Received 8 July 1999

Accepted 29 September 1999
Crystallization of $[\mathrm{Cd}(S$-thpc12 $)]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\{S$-thpc12 is 1,4,7,10-tetrakis $[(S)$-2-hydroxypropyl $]$-1,4,7,10-tetraazacyclododecane\} in the presence of sodium p-nitrophenolate forms the title complex, $\left[\mathrm{Cd}\left(\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$, in which p-nitrophenolate and water separately hydrogen bond to a different pair of cis-related pendant hydroxyl groups which, together with the four N atoms, are themselves bound to $\mathrm{Cd}^{\mathrm{II}}$ in an approximately square antiprismatic arrangement. The diastereoselectivity of the complex-forming process is apparent from the fact that both different disymmetric cations in the asymmetric unit have the same Δ helicity.

Comment

The ability of optically active pendant hydroxyl donor macrocyclic ligands based on cyclen (cyclen is 1,4,7,10-tetraazacyclododecane) to coordinate in a diastereoselective manner has been noted previously (Dhillon et al., 1997, 1998). The structures of such complexes generally approximate to that of a square antiprism (Buøen et al., 1982; Chin et al., 1994; Hancock et al., 1988; Luckay et al., 1995) and as such have an inherent helicity which may be described as Λ or Δ according to whether the four hydroxyl donors are displaced anticlockwise or clockwise with respect to the N atom to which each is attached when the molecule is viewed from the plane of the hydroxyl groups towards the plane of the four N atoms along the C_{4} axis (Dhillon et al., 1995). Recent research has been directed towards attaching aromatic groups to each of the pendant arms in such a way that they will juxtapose to form a cavity suitable for the inclusion of smaller guest molecules (Smith et al., 1999). In the present work, the attached group is the smaller methyl group and it was of interest to determine whether association with potential guest
molecules for the larger complexes would occur in the absence of aromatic attachments.

There are two formula units of $\Delta[\mathrm{Cd}(S$-thpc12) $]$ p-nitrophenolate perchlorate hydrate, (I), in the asymmetric unit which, apart from their orientation in the crystal, are very nearly identical, so they will be discussed as one (Fig. 1). There is a high degree of pseudosymmetry in the structure with average weak intensity data indicating approximate glide planes and a space group that tends towards Pcab. This space group is precluded because of the presence of enantiomerically pure chiral cations. Fig. 2 shows the relationship between the crystallographically independent species and illustrates one of the approximate glide planes.

The structures of the two cations $(A$ and $B)$ show the expected approximately square-antiprismatic geometry with $\mathrm{Cd}-\mathrm{O}$ (hydroxyl) bond lengths in the range 2.349 (5)2.626 (5) \AA and $\mathrm{Cd}-\mathrm{N}$ bond lengths in the range 2.435 (7)-

Figure 1
A perspective view of one of the crystallographically independent units in the structure. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are at the 50% probability level.

Figure 2
A view of one layer of the structure looking down c. A, D and F are related to B, C and E by the pseudo- a-glide plane perpendicular to \mathbf{b}. Cations labelled A and B have the same chirality. Letters correspond to atom labels in Table 1.
2.492 (7) A. The twist angles for the cations are $c a+12.5^{\circ}$ giving both complexes the Δ helicity. This is similar to the configuration for $[\mathrm{K}(S \text {-thpc12 })]^{+}$predicted by molecular orbital calculations (Dhillon et al., 1997). The p-nitrophenolate is associated with two adjacent pendant hydroxyl donors via hydrogen bonds (Fig. 1 and Table 1). The $\mathrm{Cd}^{\mathrm{II}}$-phenolate O distances are 4.005 (6) and 3.993 (6) \AA for A and B, respectively, eliminating the possibility of significant ionic interaction between these two charged centres. The displacement ellipsoids of the nitro groups indicate that there is considerable positional freedom for the p-nitrophenolate anions (Fig. 1). There are no base-stacking interactions between the p-nitrophenolates. The other pair of adjacent hydroxyl groups is hydrogen bonded to the water molecule (Fig. 1 and Table 1). The water molecule also acts as the donor in hydrogen bonds to phenolate and perchlorate O atoms.

The results of the crystal structure of (I) described here, show that p-nitrophenolate and water can both associate with the complex in the solid state. The electrical conductivity of the complex in N, N-dimethylformamide (DMF) solution ($92 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$), however, is above the range normally shown by $1: 1$ electrolytes in this solvent (65-90 and 130-170 $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$) for 1:1 and 1:2 electrolytes, respectively (Geary, 1971), showing that the p-nitrophenolate, at least, is partially dissociated in DMF, and probably more so in solvents of higher dielectric constant.

Experimental

$[\mathrm{Cd}(S$-thpc12 $)]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$: a solution of cadmium perchlorate hexahydrate ($356 \mathrm{mg}, 0.84 \mathrm{mmol}$) in dry ethanol (4 ml) was added over several minutes to a refluxing solution of S-thpc12 (229 mg , $0.56 \mathrm{mmol})$ in dry ethanol (10 ml). The solution was heated under reflux for 1 h , then allowed to cool slowly overnight. Very large white needles formed that were filtered off and washed with cold ethanol $(2 \mathrm{ml})$ (yield $328 \mathrm{mg}, 81 \%) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 62.01$ (4C), 59.42 (4C), 49.99 (4 C), 48.03 (4C), 20.96 (4C) p.p.m. Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{46} \mathrm{CdCl}_{2} \mathrm{~N}_{4} \mathrm{O}_{13}$: C 32.73, H 6.32 , N 7.63%; found: C 32.88, H 5.98, N 7.64%; conductivity $153 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (0.001 M , DMF) (1:2).

The title compound was prepared by adding sodium p-nitrophenolate $(46 \mathrm{mg}, \quad 0.28 \mathrm{mmol})$ to a solution of $[\mathrm{Cd}(S-$ thpc12)] $\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(205 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry acetonitrile $(15 \mathrm{ml})$. The yellow solution was then heated under reflux for 2 h , cooled and the solvent removed in vacuo. The yellow solid residue that remained was dissolved in boiling ethanol $(10 \mathrm{ml})$ and allowed to cool slowly. Fine pale yellow needles formed that were collected by filtration and dried under vacuum (yield $131 \mathrm{mg}, 60 \%$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) δ 177.16 (1C), 131.77 (1C), 127.19 (2C), 118.94 (2C), 61.79 (4C), 59.77 (4C), $50.06(4 \mathrm{C}), 48.09(4 \mathrm{C}), 20.98(4 \mathrm{C})$ p.p.m. Analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{50} \mathrm{CdClN}_{5} \mathrm{O}_{12}$: C 40.42, H 6.52, N 9.07%; found C $40.67, \mathrm{H} 6.40, \mathrm{~N}$ 9.10%. Crystals suitable for X-ray analysis were grown by diffusion of ether into a solution of the complex in acetonitrile.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)$ -
$\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=772.57$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=13.9929$ (11) \AA
$b=19.6661$ (11) \AA
$c=24.890(3) \AA$
$V=6849.3(11) \AA^{3}$
$Z=8$
$D_{x}=1.498 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 25 reflections
$\theta=15.18-19.39^{\circ}$
$\mu=0.78 \mathrm{~mm}^{-1}$
$T=200$ (1) K
Tabular, pale yellow
$0.40 \times 0.24 \times 0.20 \mathrm{~mm}$

Data collection

CAD-4/PC diffractometer
$R_{\text {int }}=0.025$
$\omega / 2 \theta$ scans
Absorption correction: Gaussian
(ABSORB; Hall et al., 1995)
$T_{\text {min }}=0.831, T_{\text {max }}=0.864$
13751 measured reflections
7229 independent reflections
5325 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.97^{\circ}$
$h=-16 \rightarrow 17$
$k=0 \rightarrow 24$
$l=0 \rightarrow 30$
3 standard reflections frequency: 120 min intensity decay: 2%

Refinement

Refinement on F^{2}
$R(F)=0.041$
$w R\left(F^{2}\right)=0.070$
$S=1.471$
6622 reflections
811 parameters

$$
\begin{aligned}
& \text { H-atom parameters not refined } \\
& w=1 /\left[\sigma^{2}\left(F^{2}\right)\right] \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.576 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.819 \mathrm{e}^{-3}
\end{aligned}
$$

Attempts to collect the data at 150 K failed because the crystal appeared to undergo a phase change. At 200 K there was a high degree of streaking in parts of reciprocal space leading to large background imbalances for some reflections. 363 measured reflections where the background ratios were greater than 2:1 were removed from the data set. All reflections (6622) with $F^{2}>0$ were used in the refinement. Bond-length restraints for the bonds of the macrocycle and the phenyl $\mathrm{C}-\mathrm{C}$ bonds were used in the refinement. The chirality followed from the synthesis. The absolute configuration was checked by refining a Flack (1983) parameter in early refinement cycles [-0.08 (5), 6533 Friedel-related reflections]. No additional rotational symmetry was found by BUNYIP (Hester \& Hall, 1995).

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).
Distances not involving Cd are hydrogen bonds with the donor atom first.

$\mathrm{Cd} 1 A-\mathrm{N} 1 A$	2.492 (7)	$\mathrm{Cd} 1 B-\mathrm{N} 1 B$	2.488 (7)
$\mathrm{Cd} 1 A-\mathrm{N} 2 A$	2.458 (7)	$\mathrm{Cd} 1 B-\mathrm{N} 2 B$	2.435 (7)
$\mathrm{Cd} 1 A-\mathrm{N} 3 A$	2.480 (7)	$\mathrm{Cd} 1 B-\mathrm{N} 3 B$	2.498 (7)
$\mathrm{Cd} 1 A-\mathrm{N} 4 A$	2.454 (7)	$\mathrm{Cd} 1 B-\mathrm{N} 4 B$	2.463 (7)
$\mathrm{Cd} 1 A-\mathrm{O} 12 A$	2.349 (5)	$\mathrm{Cd} 1 B-\mathrm{O} 12 B$	2.359 (5)
$\mathrm{Cd} 1 A-\mathrm{O} 22 A$	2.626 (5)	$\mathrm{Cd} 1 B-\mathrm{O} 22 B$	2.544 (5)
$\mathrm{Cd} 1 A-\mathrm{O} 32 A$	2.438 (5)	$\mathrm{Cd} 1 B-\mathrm{O} 32 B$	2.448 (5)
$\mathrm{Cd} 1 A-\mathrm{O} 42 A$	2.534 (5)	$\mathrm{Cd} 1 B-\mathrm{O} 42 B$	2.543 (5)
$\mathrm{O} 12 A \cdots \mathrm{O} 3 D$	2.630 (8)	$\mathrm{O} 12 \mathrm{~B} \cdots \mathrm{O} 3 C$	2.627 (8)
O22A \cdots O5F	2.746 (8)	O22B..O5E	2.970 (8)
O32A \cdots O5F	2.720 (8)	O32B \cdots O5E	2.645 (8)
O42A \cdots O3D	2.797 (8)	O42B $\cdots \mathrm{O} 3 C$	2.749 (8)
O5F..O3D	2.627 (9)	O5E..O3C	2.615 (8)
O5F..O1F	2.803 (9)	O5E..O.O1E	2.798 (9)

Data reduction: DIFDAT, SORTRF and ADDREF in Xtal (Hall et al., 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: $C R Y L S Q$ in Xtal; molecular graphics: Xtal; software used to prepare material for publication: BONDLA and CIFIO in Xtal.

The funding of this work by the Australian Research Council is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JA1006). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Buøen, S., Dale, J., Groth, P. \& Krane, J. (1982). J. Chem. Soc. Chem. Commun. pp. 1172-1174.
Chin, K. O. A., Morrow, J. R., Lake, C. H. \& Churchill, M. R. (1994). Inorg. Chem. 33, 656-664.
Dhillon, R., Stephens, A. K. W., Whitbread, S. L., Lincoln, S. F. \& Wainwright, K. P. (1995). J. Chem. Soc. Chem. Commun. pp. 97-98.

Dhillon, R. S., Madbak, S. E., Ciccone, F. G., Buntine, M. A., Lincoln, S. F. \& Wainwright, K. P. (1997). J. Am. Chem. Soc. 119, 6126-6134.
Dhillon, R. S., Madbak, S. E., Ciccone, F. G., Buntine, M. A., Lincoln, S. F. \& Wainwright, K. P. (1998). J. Am. Chem. Soc. 120, 11212.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Geary, W. J. (1971). Coord. Chem. Rev. 7, 81-122.
Hall, S. R., King, G. S. D. \& Stewart, J. M. (1995). Editors. Xtal3.4 Reference Manual. Universities of Western Australia, Australia, and Maryland, USA.
Hancock, R. D., Shaikjee, M. S., Dobson, S. M. \& Boeyens, J. C. A. (1988). Inorg. Chim. Acta, 154, 229-238.
Hester, J. \& Hall, S. R. (1995). BUNYIP in Xtal3.4 Reference Manual, edited by S. R. Hall, G. S. D. King and J. M. Stewart. Universities of Western Australia, Australia, and Maryland, USA.
Luckay, R., Reibenspies, J. H. \& Hancock, R. D. (1995). J. Chem. Soc. Chem. Commun. pp. 2365-2366.
Smith, C. B., Wallwork, K. S., Weeks, J. M., Buntine, M. A., Lincoln, S. F., Taylor, M. R. \& Wainwright, K. P. (1999). Inorg. Chem. 38, 4986-4992.

